If it's not what You are looking for type in the equation solver your own equation and let us solve it.
y^2+10y-1200=0
a = 1; b = 10; c = -1200;
Δ = b2-4ac
Δ = 102-4·1·(-1200)
Δ = 4900
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{4900}=70$$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(10)-70}{2*1}=\frac{-80}{2} =-40 $$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(10)+70}{2*1}=\frac{60}{2} =30 $
| 19x-1=39 | | 18x÷5=26÷10 | | .15/x+.2=x | | 8x^2+7√6x+29=0 | | x*x+0.2=0.15 | | (5k+1)(5k+10)=9*180 | | x^2-32x-768=0 | | 0.15+x*x=0.2 | | y=3^1.25 | | 18u/10+6/10-5/10=7/10 | | y=3^(5/4) | | 60+x/60=3/5 | | 6x^2-29x+34=0 | | 16x^2-80x-25=0 | | 3(2x+9)=x+40 | | -4(-2x+9)=12 | | 5x+10=4x+50 | | 4-1/2(p-1)=3+3/2(p+2) | | x^2+4x-7=12 | | -5x=104 | | 6(3u+1÷5)-1/2=7/10 | | 6(3u+1/5)-1/2=7/10 | | 12-6x=-40 | | 7x=12-56 | | 5(x-2)=5x(-2)-5x2 | | 20x/20=200/20 | | 2x/5=8/10 | | 1-3/6a=-2 | | Yx180=330 | | Xx180=330 | | 33=x-20.5 | | 0.15x-0.12=0.6 |